

Plasma 2017, Dec.21-24, 2017, Himeji, Japan

Modeling of Plasmas and Neutrals Including Plasma-Wall Interaction for Long Term Tokamak Operation

<u>Akiyoshi Hatayama¹</u>, Kousuke Okamoto¹, Ryoko Tatsumi¹,

Kazuhiro. Abe¹, and Kazuaki Hanada²

¹Graduate School of science and Technology, Keio Univ., Japan ²Advanced Fusion Research Center, RIAM, Kyushu Univ., Japan.

1. Background/Motivation (1)

- Density control of the core/main plasma in future fusion reactors like ITER/DEMO is one of the critical issues, especially for their long term operation.
- Metal plasma facing materials (PFMs) are expected to be one of the promising candidates for such future fusion power plants.
- Recently, **experimental studies** :

the **effects** of the **long time scale plasma – PFM wall interaction on** the main **plasma density** and **its control** have been done in the **QUEST** tokamak [1,2,3].

suggest that the wall H atom-inventory play a key role !

[1] K. Hanada, et al., Nucl. Fusion **57**(2017)126061.

[2] K. Hanada, et al., Plasma Science and Technology **18**(2016) 1069.

[3] T. Honda, Department of Advanced Energy Engineering Science, Kyushu University, Master's thesis (2014).

1. Background/Motivation (2)

- The purpose of this study is to develop a simple plasma and neutral model which includes the long term plasma-wall interaction, especially the interaction between the plasma and metal PFMs
- in order to understand basic characteristics of the long term behavior of particle balance in the overall system including :

a) Main Plasma, b) SOL/Divertor/Limiter Plasma, c) Wall

 Conventional 2D/3D Edge plasma-neutral code (e.g. SOLPS(B2.5-Eirene), EDGE2D, UEDGE, SONIC) is too massive to simulate for such a long time dynamics of the system

adopt zero-dimensional (0D) approach taking into account the profile effect from the 2D/3D code results

2. Model (1) : Basic Model Concept

Particle Balance model for the **overall system**:

(a) Main Plasma, (b)SOL/Divertor/Limiter Plasma, (c)Wall

Fig.1 Schematic drawing of the **model geometry** (QEST limiter configuration)

Fig.2 Overall concept of the present model

2. Model : Neutral Model (3)

Table 2.1 Main reactions taken into account in the model.

Reaction	Eq.
H ionization	$H(p) + e \rightarrow H^+ + 2e$
H_2 dissociation	$H_2(v) + e \rightarrow 2H + e$
H_2 ionization	$H_2(v) + e \rightarrow H_2^+ + 2e$
H_2 dissociative ionization	$H_2 + e \rightarrow H + H^+ + 2e$
H_2^+ dissociation	$H_2^+ + e \rightarrow H + H^+ + e$
H ₂ ⁺ dissociative recombination	$H_2^+ + e \rightarrow 2H$
H ₃ ⁺ dissociative recombination	$H_3^+ + e \rightarrow 3H \text{ (or } H_2 + H)$
H ₃ ⁺ dissociative recombination	$H_3^+ + e \rightarrow 2 H + H^+ + e$
H, H ⁺ charge exchange	$H + H^+ \rightarrow H^+ + H$
H ₂ , H ⁺ charge exchange	$H_2 + H^+ \rightarrow H_2^+ + H$
H ₃ ⁺ production	$H_2 + H_2^+ \rightarrow H_3^+ + H$
H ionization by H ⁺	$H + H^+ \rightarrow 2H^+ + e$
H ₂ ⁺ dissociative ionization	$H_2^+ + e \rightarrow 2H^+ + 2e$

2. Model: Neutral Model (4)

In addition to the ground-state atom modeled above, we solve a system of simultaneous rate equations for the population density of excited atoms with the quasi-steady state collisional-radiative model (QSS-CR) to compare the H α intensity measured in the experiments.

T. Shibata, et al, J. Appl. Phys. 114 (2013)143301.

Calculated by main plasma model Eq.(1a1) Calculated by H atom model Eq.(2b1)

 A_{LCFS} A_{Wall} A_{Lim} : Surface area of LCFS, Wall and Limiter, respectively

3. Initial Model Application to QUEST(1)

(1) Main Assumptions / Calculation Conditions

- Low density sheath limited attached state in front of the limiter has been assumed
- Wall and Limiter Material are the same for simplicity

Table 3.1 Device and Plasma Dimensions

Major radius :	<i>R</i> =0.68 m
Minor radius :	<i>a</i> =0.4 m
Volume of main plasma :	<i>Vp</i> = 1.28m ³
Volume of vacuum vessel :	<i>Vv</i> =12.8 m³
Surface area of vacuum vessel :	<i>Av</i> = 26.5 m ²

Table 3.2 Gas puffing and pumping parameters

Gas puffing rate : 3.5x10¹⁸ /puffing for 10ms **Gas pumping rate :** 1.7x10¹⁷ /s

Fig.2 Schematic drawing of the model geometry (QEST limiter configuration)

3. Initial Model Application to QUEST(1)

Table 3.3 Initial density for each particle species

Plasma : $n_{\rm e} = n_{\rm H^+} = 1 \times 10^{17} {\rm m}^{-3}$, H2 Molecule : $n_{\rm H_2} = 1 \times 10^{15} {\rm m}^{-3}$, **H atom** : $n_{\rm H} = 1 \times 10^{10} {\rm m}^{-3}$ **Plasma particle diffusion coeff. :** $D = 0.3 \text{ m}^2/\text{s}$

Table 3.4 Profile factor of plasma & neutral density

Plasma profile factor : α =0.3 Neutral profile factor for H_2 : β =0.1

Table 3.5 Temperature for each particle species

Electron	$: T_{e} = 10 \text{ eV}$
lon	$: T_{\rm i} = 1 {\rm eV}$
H2 Molecule	$T_{\rm H_2} = 0.01 {\rm eV}$
H atom	$T_{\rm H} = 0.1 {\rm eV}$

Table 3.6 Wall parameters

H recombination coefficient for the wall : $k_{wall} = 1 \times 10^{-38} \text{ m}^{4}/\text{s}$ **Thickness of the re-deposition layer :** d_{wall} =50 nm

- During early phase $0 \le t \le 30$ s before the saturation of the H atom wall-inventory frequency of gas puffing (corresponding to the rapid increase in H α signal) is large
- After the saturation of wall H atom inventory $t \ge 60$ s

 $H\alpha$ signal is almost constant and

the plasma density is mainly sustained by the gas feed from the wall.

 Saturation level of H-atom wall inventory agrees with that estimated in the experiments with a reasonable value of wall recombination coefficient.

3. Initial Model Application to QUEST(3)

(3) Comparison with the experiments

- Effect of the wall temperature on the H atom wall-inventory

Fi.g.3.2(a)

Modeling results reproduces basic trend of the effect of the wall temperature on the H atom wall inventory with varying k_w in a reasonable range at the reasonable saturated values !

 Quantitatively, however, time to reach the saturation in the modeling is relatively short (~ 60 -70 s) compared with those (> 100s) in the modeling

[3] T. Honda, Department of Advanced Energy Engineering Science, Kyushu University, Master's thesis (2014).

3. Initial Model Application to QUEST(4)

(3) Comparison with experiments : Time evolution of $H\alpha$ signal

Modeling results reproduces basic trend of H α signal

 In High Wall Temp. Case, Hα signal becomes almost constant more earlier than in Low Temp. Case – main plasma density is mainly sustained/controlled not by the external gas puffing, but by the wall out-flux after the saturation
 [3] T. Honda, Department of Advanced Energy Engineering Science, Kyushu University, Master's thesis (2014).

3. Initial Model Application to QUEST(6)

(4) Our model really robust ?

Keio University

- Sensitivity analysis of the results on key assumptions/parameters – $T_{\rm e}$

3. Initial Model Application to QUEST(7)

Plasma densitv

Ha intensity

Plasma density

Ha intensity

(4) Our model really robust ?

- Sensitivity analysis of the results on key assumptions/parameters – D

10²⁴

10²²

10²⁰

10¹⁸

10¹⁶

10¹⁴

10²²

10^{20 .}

10¹⁸

10¹⁶

plasma density and $\mbox{H}\alpha$ intensity

Time [s]

10¹

sity [m⁻³]

Plas

10¹⁹

^و 10¹⁸ ق كي

10¹

10 20 30 40 50 60 70 80 90 100

Wall H atom-inventory

Fig.3.6

Keio University

- (a) D=0.3 m²/s * typical value
 - in most of 2D Edge Plasma simulations

(b) *D*=0.6 m²/s

(c) D=1.2 m²/s * estimated by Bohm diffusion

D~(1/16)(Te/B)

- we have developed a simple zero dimensional (OD) model which consists of the particle balance equations for the following three different particle species:
 - i) hydrogen **plasma** (elec., H^+ , H_2^+ , H_3^+),
 - ii) neutral hydrogen atoms (H) and molecules(H₂) in the gas phase
 - iii) wall-stored H atoms.
- The model has been applied to a long term operation (up to ~100-200 s) with the limiter configuration in the QUEST tokamak.

4. Summary & Future Problem (2)

- Modeling results of the long time evolution (~ 100-200 s) reasonably reproduce experimental tendencies:
 - Density feedback control by H α signal and external gas puffing is efficient in the early phase (<100s)
 - For more long time scale (>100s), the particle balance of the system is mainly sustained not by the external particle source/pumping, but by the wall recycling source.
 - Modeling results of the **H-atom wall inventory** reasonably agree well with those in the experiments with a reasonable value of wall recombination coeff.

4. Summary & Future Problem (3)

- However, **further model validation** and **improvement** will be needed:
 - More Systematic sensitivity analysis of the results on the main assumptions and input parameters: e.g. T_e, T_i, D, profile factor from 2D/3D Edge simulation, ...

As for the T_e , D, the "basic tendencies" are not so sensitive on these parameters, if we change these parameters in the reasonable range: $T_e \sim 10 \sim 50 \text{eV}$, $D \sim 0.3 - 1.2 \text{ m}^2/\text{s}$

- For more long term phenomena (~ several 100-1000s,) further model improvement will be necessary :

e.g. taking into account effects of the H trapping site in deposition layer^[1]

[1] K. Hanada, et al., Nucl. Fusion **57**(2017)126061. & this Conf.